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J. Phys. A: Gen. Phys., 1971, Vol. 4. Printed in Great Britain 

A classical description of spinning particles 

J. R. ELLIS 
University of Sussex, Falmer, Brighton, England 
MS.  receized 7th January 1971 

Abstract. On the basis of a calculation for the force and couple exerted on a 
moving point dipole given previously, a consistent description of classical spin 
for particles possessing charge and dipole moment is discussed. 

1. Introduction 
One of the difficulties associated with the classical treatment of spin for particles 

possessing charge and dipole moment lies in the variety of possible equations which 
may be used satisfactorily to describe it. Thus we find many differing interpretations 
of classical spin with no overriding treatment which is fundamental. -4lthough the 
latitude of choice for dynamical expressions representing force and couple, consistent 
with relativistic particle mechanics, is small, there has been no general agreement as 
to the exact expressions which should be used to represent the effect produced by an 
external electromagnetic field on a moving dipole. While it is known that for many 
applications of classical spin, and also for reasons of simplicity, an exact knowledge of 
detail is not necessary, it would be useful to find a complete picture describing every 
possibility and which could with advantage be used to describe, for example, the 
classical evaluation of the spin gyromagnetic ratio. 

I n  a recent article (Ellis 1970) certain expressions were derived for the force and 
couple exerted on a moving electric dipole, which were relativistically covariant and 
which led to the usual classical expressions for the force and couple for a stationary 
dipole. The  method involved in obtaining these expressions was based on an in- 
variant action principle which led to equations of motion containing the expressions 
for the force and couple. The  validity of the results obtained for these quantities was 
independently established, in the case of constant velocity, by agreement with the 
transformed expressions by Lorentz transformation from the usual static formulae. 
The  particular model used to describe the dynamical aspects of the motion, and in 
particular that for the spin angular momentum, was not pursued in detail in that 
work and comparison with standard treatments of spin was not made. In  view of the 
known validity of the expressions for the force and couple, it seems worthwhile to 
investigate further the dynamical equations from which the results were derived, 
and we hope to show in the present article that the model chosen possesses several 
advantages over other models of a more conventional type, and therefore provides 
to some extent a justification of the equations given previously, and some new lines 
of approach in the description of classical spin. 

A fact which arises from the equations given previously, in the case of constant 
spin, is that if we impose the condition that the rest mass of the pole-dipole particle 
remains constant throughout its motion, it follows (apart from one or two possible 
and perhaps less dynamically interesting alternatives) that the spin angular momen- 
tum of the particle should remain parallel to the dipole moment (electric or magnetic). 
It is clear that the imposition of a condition of this kind on relativistically covariant 
equations must lead to a restriction of some kind on the motion of the particle, and 
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the fact that this alignment of spin and moment (often assumed in many classical 
arguments) arises naturally, is quite useful. We devote some time in 5 2 to discussing 
this and other possibilities when the equations are taken in their general form. 

A model given in the book by Rohrlich (1963) which is an improvement of the 
treatment given by Panofsky and Phillips (1964) to account classically for the spin 
gyromagnetic ratio (g = 2) is one in which it is assumed that the spin is parallel to 
the magnetic moment, and we show that in this case, where the magnitude of the 
spin is assumed constant, the form of his equations (the space components of which 
reduce in the nonrelativistic limit to the classical equation dsldt = m x B )  agree with, 
and is a solution of, our own. Although Rohrlich’s treatment assumes that the con- 
ventional condition of spin, SsvVv = 0, is satisfied, it is apparent that, in an 
instantaneous rest-frame an interpretation is lacking for the nonspatial components of 
his equations. However, his treatment map be satisfactorily described by means of 
our own equations. 

The equation for the force, which now becomes modified by the addition of a 
dipole force, cannot now be used to deduce the gyromagnetic ratio as was the aim 
in the treatments of Rohrlich and Panofsky and Phillips, but an essentially similar 
equation exists in component form which may be used directly to obtain a relation- 
ship between the magnitudes of spin and moment. This leads to a slightly modified 
value for the gyromagnetic ratio which, if taken as accurate, leads to a credible re- 
lationship between the rest energy and dipole energy of the particle. 

Returning to the equations in their general form we investigate in $4 the conse- 
quences arising from dropping the condition that the spin magnitude is constant, but 
the solutions of dynamical importance as compared with 4 2 are found to be those 
where spin angular momentum and angular velocity of the particle are in line. Such 
particles we call ‘spherical’ type particles. 

In  3 5 it is shown how, through the canonical momentum 
* 

p 4  = GU + eA’ -I- q,FPa - muFuu 

containing dipole moment terms, the transition to a relativistic quantum theory may 
be achieved in the case of constant spin, necessitating only the ‘minimal’ coupling 

%U + 2‘ -t- i(e/tic)AU 

and a small change in the magnitude of the rest mass. The relevance of Rohrlich’s 
equations to this is shown. 

The arguments here given are in the nature of mathematical proof and therefore 
we shall use covariant description throughout, although in one or two cases equations 
have been written in terms of three-dimensional vectors to simplify their understand- 
ing. 

Antisymmetric tensors play an important part in classical descriptions of spin and 
we have found it useful to split such quantities into their respective rector compon- 
ents. This approach is unlike any methods hitherto used in classical treatments of 
spin and the method does not lose any generality. For the field and dipofe moments 
(evaluated at the particle’s position) we shall write, without loss of generality 

FuV = -(EUVV-E~’V&)+pVaBB V 
U B  

( 1 . 1 )  p“‘ = ( 4 u v v - q % v U ~ + ~ U v u B ~ a v ~  
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where the electric and magnetic vector components of the field ( E u  and B A )  and of 
dipole moment (q' and mu) are orthogonal to the four-velocity of the particle Vu, and 
therefore represent the quantities actually measured by an observer travelling with the 
particle. From conventional electromagnetic theory we may say that we should expect 
the force and couple measured by such an observer would contain the terms 

f" = eEfi + qffaaEU + mUZUBu 
(1.2) 1 CUV = - (q4EV - q"U) - ("Bv - mL'Bfi 

corresponding to the usual expressions 

f = eE+(q  .V)E-t(m 3) B 
C = q x E + m x B  

for the force and couple. These terms, together with other terms q x B - m x  E 
arising from the current effects of the motion of the poles of the dipole in their reaction 
with the field, agree with the valid expressions for the force and couple referred to 
earlier, as may easily be established. 

2. The equations of motion 
We now consider in detail the equations derived previously for the motion of a 

pole-dipole particle in the presence of an external electromagnetic field, We shall 
use the same notation as in the previous article (Ellis 1970), and our first aim is to 
discover the consequences arising from the condition of constant rest mass as referred 
to in the introduction. We shall first restrict the argument to the case where the 
magnitudes of the spin angular momentum and dipole moments of the particle 
remain constant, since the task involved is easier, but later (in 3 4) we shall remove 
these conditions, and the additional terms arising in the equations of this section will 
be indicated. 

The  expressions for the four-forcef" and couple six-vector CUv exerted on a point 
particle, possessing charge e and electric and magnetic dipole four-moments qi', ?tzd 

and travelling with four-velocity Vu in an external electromagnetic field FPb were 
previously found to be t  

(2 .1)  .f" = -eFUvV - 4  F U U -  q,FUv*UVV + YizUF;' + nzaFUt*"VV 

(2.2) Cuv = 2 q [ ~ F ~ ' I a J 7  - 2mtuFvl~V 
a' 

(The terms arising from the magnetic dip$e moment mu may be obtained by the 
replacement of q u  by --mu and Fuv by Ffiv.) The validity of these expressions was 
illustrated in the case of constant velocity, and their validity for all nonconstant 
values oi V u  will be assumed. It is straightforward to illustrate that the terms given 
in (1.2) are contained in these expressions. 

The dynamical equations governing the motion of the particle: 

(p = f" 
SPV + 2GrfiVvI = CLIV 

t These equations were originally given in a different article (Ellis 1966). 
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(where GU is the mechanical four-momentum and Sfiv is the spin angular momentum 
six-vector for the particle, connected by GU = m,c2Vfi - SuvVv) were found from 
a general Lagrangian approach, and this formed the basis of our arguments leading 
to the construction off" and Cuv. It is not asserted that these equations should be 
regarded as the only possible equations governing classical spin, but their simple 
form and their independence of any electromagnetic quantity are significant (see, 
for example, Barut 1964 pp. 83-84, Rohrlich 1965 p. 208 for references to other 
dynamical models). 

Combining (2.1), (2.3) and (2.2), (2.4) we now impose the condition of constant 
rest mass mo = 0. We have, from moc2 = GfiVfi ,  the equation 

C;,Vfi+ G , P  = 0. 

From (2.1), (2.3) and the expression for GU this becomes: 
d 
d r  - (m,c2)  -qaFuEVfi+maF. Ua V f i - S f i Y V v ~ ~  = 0 (2 .5)  

other terms having vanished identically. 

world line, we may write 
Since the four-moment qa has constant norm (cjffqn = 0) and is rotating about the 

4" = nffoqa (il", = - Q,ff). (2.6) 
4 4 4 

If qa does not rotate, then the antisymmetric angular velocity tensor Q2", reduces to 
that for the Thomas precession: 4 

nff,, = y, V V , -  VJff 
4 

and q" is then simply transported along the world line by the equations (of Fermi- 
Walker propagation) : 

4" = - ( voqq V" 

(see, for example, Panofsky and Phillips 1964 p. 441 eqn (23-72)). However, in 
general when q" rotates, we include this term in the expression for Q2"D : 

Q 

(2.7) 

where ua is the angular velocity four-vector representing the rate of rotation of q", 
such that w"V, = 0. ( In  [the instantaneous rest-frame w" has components 
wu E (0, U).) The form of (2.7) arises unambiguously from the general form of an 
lntisymmetric tensor, the two 'vector' parts being Va and a/, both orthogonal to 
V E  (and therefore contains its correct six components). The first vector part 
ensures that rotation takes place in the orthogonal three-space (qaV, = 0), since we 
have from (2.6) and (2.7) 

4 

4 4 

4 

1 
4" = - (Voq4) V" + - ("flfiVqoyu v, (2.8) 

C 
and therefore 

4"Va+q"Va = 0. 
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Using (2.8) and an analogous expression for ha we have for the first two terms of 
(2.5) the following: 

1 
ita C 

-pF,,V'+m"F* V* = - -~ '02qp~aViZF, ,VU 

11-here w' is the angular velocity four-vector representing the rate of rotation of 
ma, such that w"V, = 0. (We note that OUR does not contribute in these terms.) 

We now consider the final term of (2.5). The spin angular momentum tensor Sitv 
is conventionally chosen to hare its components orthogonal to the worldline and is 
therefore similar to the electromagnetic moment tensor of a magnetic dipole, so that 
me write 

m 

m T 

1 
- s,, = &va,SaV, (2.10) 
C 

where s' is the spin angular momentum four-vector of the particle, orthogonal to the 
worldline. (This is entirely equivalent to the so-called 'Weyssenhoff condition'.) 
The components of Sit, are therefore given by 

where s represents the 'observed' spin (cf. Ellis 1970 equation (2.12)). 
I t  is clear that whether the norm of the spin angular momentum ( -sasa)1'2 is 

constant, or not, the derivative of (2.10) with respect to the proper time, when multi- 
plied b!; V > P ,  gives zero. Hence the equation (2.5) reduces by (2.9) to the equation 

d 1 

d7 C 
-- (m,?) -(afluzV,(qs~,F,,Vfi-m w F ,  Vu)  = 0.  (2.11) 

pmo U@ 

We may simplify the terms in parentheses in (2.11) with the help of the equations of 
motion (2.2)) (2.4), if it is now assumed that the particle possesses only an electric 
dipole moment (m, = 0) or only a magnetic dipole moment (q8 = 0 )  or both electric 
and magnetic dipole moments inclined to each other at a constant angle 
(qamu = constant). Each of these cases may be summarized by writing 
w' = w' = mu (say) and referring to w' as the angular velocity of rotation of the 
particle, it being assumed that the electric and magnetic moments are being carried 
round with the particle at the same rate of rotation as the particle itself rotates. This 
is a fairly natural assumption to make and it may indeed be verified that the proper 
time derivative of qama vanishes when w' = ob from (2.8) and a similar equation 
for mu. In  these circumstances, from (2.2), equation (2.11) now becomes 

m 

a m  

(2.12) 
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yc4 $0 y u  

s,  s ,  s ,  

The rest of the discussion is now confined to the reduction of this equation. From 
(2.4) and (2.10) we have for the couple six-vector, 

= 0 

(2.13) 

Assuming now that the spin s’ rotates with constant norm, in a like manner to q u  
and mu, so that we have an identical equation to (2.8) for S ’ :  

1 
s’!I - - - ( v i , s y p  + - p a u z s  A s g  0 I; r (2.14) 

where w 5  represents the angular velocity of rotation of the spin angular momentum 
vector, &e find that the Thomas term in (2.14) for s’ again does not contribute to 
(2.13) and we are left with the equation 

C 

The last three terms vanish identically (this can be established by calculating their 
duals) and we have 

e,, = s ~ : ; I ; v S , ~ , V ,  

(2.15) 

In  the instantaneous rest-frame, the nonzero components of C,, are 
(&, C31, Clz) 3 - C  where C is the electromagnetic couple, and the components 
of (0, y), sa 3 (0, S) so that equation (2.15) is the covariant 
generalization of the equation C = 

and sa are cf 

x s in the instantaneous rest-frame. 
Using (2.15), equation (2.12) now becomes 

(2.16) 

(2.17) 
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which, in view of the complete antisymmetry, amounts to four separate equations, 
but in fact reduces to only one in the instantaneous rest-frame. The  rows of this 
determinant are linearly dependent : 

w, = X s n + p y  ( E  = 0 , 1 , 2 , 3 )  (2.18) 

and this equation forms the general solution of (2.16) where X and p are some scalars. 
(In the event of the determinant having rank one, the vectors U,, s,, y, are 
proportional.) 

However, (2.18) is in this case restricted by the requirement of constant spin. 
Multiplying (2.4) by S,, and using equations (2.10) we find 

Equation (2.2) therefore shows that 
ii 

c~u,aZsaVt(qUFVu-mPFVa)'Ci,  = 0. (2.19) 

An immediate solution of (2.18) which is dynamically satisfactory and which is 
compatible with the equation (2.19) is 

q, = As, ma = I's, (2.20) 

where .I, I' are constants. I n  this case (2.19) is obviously satisfied and (2.18) is 
satisfied for X = 0, p = 1. Another solution of (2.18), which is perhaps less interesting 
but which is compatible with (2.19) in certain circumstances, refers to particles, 
which include those we might term 'spherical type' particles, for which 

s, = I w ,  

where I is some scalar (a moment of inertia). In this case (2.18) is satisfied for p = 0 
and (2.19) is satisfied provided the dipole moments vary according to the equation 

QNEU+rizUBu = 0 

(see (2.8), and equation (2.22) following). 
I t  seems unlikely that other solutions, if they exist, would be as satisfactory as 

these two, and no other solutions have been found. I t  is apparent that the most 
acceptable solution to the equations in the case of constant spin and rest mass is 
when the spin and moment(s) are permanently in line. 

lye may conclude the discussion by confirming that equations (2.20) do in fact 
lead to constant rest mass, and in view of their significance it may be useful to add, 
as well, the case where A, I? are allowed to vary. This leads to a simple relation 
between mo and +pip"BFcs which is important and will be used in the next section. 

Since CUB = c,$,BILvsuVv (equation (2.13)), we have from the first equality in (2.5) 

(2.21) 
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where we have used (2.10). Without loss of generality we may represent by (1.1) 

FB, = - ( E ,  V ,  - E, V,) - tByuyBu V' 
(2.22) 

Fp*y = (B",-B,VR)-t,,,,,E'V" 

where the electric and magnetic components EU, BU are orthogonal to Vfi. We find 
from (2.2) that 

+FBrC" = @E'B" VT  

.IF * CRY = - E  m",IjRB~Vz 2 BY a4a z 

and therefore the first two terms of (2.21) cancel. Hence 

d r  

d d 
67 ' ) d r (  
-(moc2) = &((pfiVv- "Vu - 

If A, r are proportional, this equation reduces to 

d d 
-- (moc2) = Q@flvFuY -- (In I') 
dr  d r  

(2.23) 

where p' is the electromagnetic moment tensor 

p u v  = gUV"oa"Vu 1 + ['; 'uhuVfi. (2.24) 
We see at once that when I' is constant, m, is constant. Other dynamical models of 
spin give rise to similar equations to equation (2.23) but in nearly all cases these will 
contain additional electromagnetic terms. 

3. Comparison with a standard treatment based on the assumption of 
parallel spin and moment 
I t  may be verified that the following expression for suv satisfies the equations of 

motion (U), (2.4) 

where puv  is the electromagnetic dipole moment tensor (2.24). Expression (3.1) leads 
to a considerable simplification of the first equation of motion (2.1), (2.3) which we 
may see in the following way. From the expression for the mechanical momentum, 
we have from (3.1) 

(3.1) S f l V  = -2pruUF > I  

GL' = moc2 Vu + 2pruaFUfl' V ,  

VR - - eloc2 Vu - 2g VMj'afil V, - 2f iq ,P$RI  

* 
= ( ~ , C ~ - & ~ , F ~ ~ ) V ~ ' -  q,F"u -maFUu. 

Differentiating this last expression and using the first equation of motion (2.1), (2.3) 
we have 

d 
d r  
- ((eloc2 - 3paa$'aB) Vu) = - eFus'1; ,, - &papFaBsU 

where we have used Maxwell's equations for FaD in the last term. On completing the 
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differentiation we find 

( m O ~ 2 - $ p a B F a * ) a u  = - e F u v V v - p ~ R F ~ B , r u V v l V  V ’  ( 3 4  
The  coefficient of the term in Vu, which has been omitted from the above equation, 
must vanish on account of its being orthogonal to the other terms of (3.2); thus we 
have additionally, 

i+l0~’ = $p,,F@. (3.3) 
I t  will be seen that in the case where the fields are uniform (FOB,@ 2 0) 

equation (3.2) becomes identical with the equation of motion of a moving point 
charge 

where the mass of the particle is given by 

me2 vu = - eFuvVv (3 *4) 

1 
2c 

m = m,- 7p,,F‘fl. (3.5) 

This is a constant by virtue of (3.3). (We note that in the absence of electromagnetic 
field the solution Suv = constant is compatible with a straight world line,) 

Rohrlich (1965) gives an account of the same equation (3.1) as we have described 
above. However, his treatment differs from our own in that it is not related to a force 
equation containing dipole moment terms. He assumes that the conventional 
condition applies to the spin tensor and it is significant that he describes the 
equation (3.1) as the relativistic covariant generalization of the classical equation 

ds  _ -  - mxB 
dt 

although it is apparent that, in an instantaneous rest-frame, the equations (3.1) for a 
magnetic dipole have the components 

and an interpretation is lacking for the second three components. Nevertheless the 
consequences following from his treatment in the evaluation of the gyromagnetic 
ratio in the case of parallel moment and spin are valuable. 

For this reason we feel it is important to try to remove these difficulties and to 
establish a similar line of reasoning leading to  the value g = 2 for the spin gyro- 
magnetic ratio. 

Now we have placed an interpretation (in the case where SuvVv = 0) on all 
components of (3.6) since we have the covariant equations 

c,$,,,,~~~V* = - (m&B, - m,B,) c(suaV - s v v u )  = &EV - mvE” (3.7) 
from (3.1), and these equations are viewed as solutions of the more general 
equations (2.2), (2.4) where the couple tensor Cuv is alone significant. I t  is clear that 
the solutions of equations (3.1) form only a special class of solutions of the 
equations (2.2), (2.4). However, they are the only solutions for which spin and dipole 
moment terms do not explicitly enter into the canonical momentum, as will be shown 
in 9 5 ,  where an application to quantum mechanics is studied. The equations (3.1) 
are themselves sufficient but not necessary since we may add to the right hand side of 
equations (3.1) any antisymmetric tensor of the form CUVv-Ci.Vfl, where C’ is any 
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space-like yector orthogonal to Vf i ,  and the equations for the couple (2.2), (2.4) 
remain satisfied. (The first equation of (3.7) is not affected by an addition of this 
kind and the spin will continue to be Thomas-precessed in the absence of couple.) 
Assuming that Rohrlich’s equations (3.1) are satisfied, %e see that they are sufficient 
for the determination of the six unknown values of s” and since they are six in 
number (see (3.7)). Therefore we may not in general impose the condition that 
s’ and m i l  are parallel, as in Rohrlich’s treatment, unless the second of the 
equations (3.7) is satisfied. In  the case where the fields are uniform this latter 
equation is satisfied identically, and this is a case we now discuss. 

Evaluation of the gyromagnetic ratio in the case of uniformj5eld F”,“ = 0 
I t  is instructive to set up a solution involving the quantities E f i )  B’, measured 

along the worldline. Considering EU and Bfi as functions of proper time along the 
worldline of the motion xu = ~ ‘ ‘ ( 7 ) )  we have on differentiating (2.22): 

0 = F A t , V S  - -(EfiVV-E~~Vfi)-~fi~uRBuVR 
.% - 

- (E.” j?J - EL ] / f i  j + E*‘ ,OBa va, 
From this it follows that 

E.  = (I+ V,) v u  + p a 4  VVB, v4 
BJ = ( B e  v,) VU - [ U V ~ B  V, E, V R .  

Since the field is uniform it follows from (3.4) that E ,  is parallel to T i u ,  and therefore 
(3.8) gives immediately 

(3.81 

BU = (B“Va) vfi B”B,, = 0 P E ,  = 0 (3.9) 
and ElL and BP have constant norm, measured along the worldline, and BU does not 
rotate (Fermi-SValker propagation). Since EU has constant norm it follows again from 
equation (3.4) that the acceleration of the particle is uniform: 

VPV,~ = constant. 

In  these circumstances it is clear that the second equation of (3.7) may be satisfied by 
taking mu and sfi  parallel, and connected by 

mu = rs’ I’ = ejmc 

where m is the ‘modified’ mass (3.5)- From the work of 42, since P is constant, s’ 
(and therefore mfi) must have constant norm, and the mass m,  is also constant. It 
therefore follows that the dipole potential energy V = -$pu4Fa4 = m‘B, is a 
constant of the motion, as may independently be verified from the equations 

which follow immediately from (3.9) and the dual of the first equation of (3.7). 
(Although SUB, = constant and B’ does not rotate, it does not follow from this that 
s’ does not rotate, since we have the equation 

cB’ = c(ia V,) Vu - fuvccB V,m,B, 

and the only occasion in which this happens is in the absence of couple.) 
We therefore have a fully consistent picture in the case of a uniform field, in 

which the motion of the particle, and the position of the moment and spin, are known 
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at any particular instant. I t  leads to a value for the gyromagnetic ratio g through the 
expression 

(3.10) 

and is slightly different from the usual value g = 2 as obtained by Rohrlich. 
There is no a priori reason to suppose that (3.10) is an exact relationship which 

remains valid in the presence of non-uniform fields. For equations (3.1) to hold we 
may not in general suppose that the spin and dipole moment remain parallel. 
However, if, in the context of the previous section, we make the choice (3.10) for I?, 
we find that equation (2.23) may be integrated : 

d m d 1 d  
-(?no$) = - - -pwvJ'  
d r  2m liV d r  2m d r  

- (mc2) = - -- -- (mp*"Yu,). 

This gives 
m2c4 +mc2puvFuv = (nioc2)2 - (+pfl"FPL,)* = constant. 

The  change in dipole potential V = -$pp"yFu,, of the particle must therefore be 
related to its change in mechanical mass mo by the equation 

to first order. This expression is reminiscent of the role played inmass renormalization. 

4. Variable spin 

the electric and magnetic dipole moments and the spin are given by the equations 
Considering now the equations (2.2), (2.4) in their general form, we suppose that 

qu = 4p mu = S'L = s p  

where the norms q, m, s representing the magnitudes of the moments and the spin are 
allowed to vary. The unit directions q', fi ', fp" satisfy the equations 

- *  @'d, = mum, = = - 1 
and we suppose that the vectors q', mu, s"" have rates of rotation given by the previous 
angular velocity vectors (of $2) w', mu, mu respectively. Hence in comparison 
with (2.8) and (2.14) we have 

4" = q g f f + 4 p  

d 1 
d r  C 

and similar equations for riz" and s'. Equation (2.5) therefore becomes, with the help 
of (2.9) with 4" and mu replaced by unit vectors, 

= I-- (In 9))  qa  - ( ~ ~ 4 ~ 1  P + - eafiuv qRmuvs (4.1) 

comparing with equation (2.12). 



594 J.  R. Ellis 

Now from a similar equation to (4.1) for i’ we find 

corresponding to (2.15). Hence (4.2) finally becomes 

\ d d 
- (moc2) - (In m,) m,c2 
d r  {dr I ‘  

I n  this equation the quantities moc2, q“E,, mago, -+sewcr represent the rest energy, 
the dipole potential energies and the classical spin energy of the particle respectively 
The  equation (4.3) reduces to equation (2.23) when s” and mu are parallel and q’ is 
zero, for in this case ’ = 0. The other consequence of equation (4.3) is the case of 
‘spherical’-type particles where the spin angular momentum s’ and the angular 
velocity u’ of the particle are parallel. If we assume that the rest mass m,, and the 
magnitude of the spin s increase in the same proportion, the energy equation 

moc2 = -saw, (= -*s,,nQo) 
is satisfied identically for particles of this type when the dipole moments have constant 
strength. (If the moments themselves increase at the same rate, this energy equation 
is modified to mc2 = -sUw, where m is given by (3.5).) 

5. Application to quantum mechanics 

interacting with an external field, we have the canonical momenta? 
From the Lagrangian for a single particle possessing charge and dipole moments 

For the first of these we have the expression 

0” = Gfi + ea” + qaFPU - m,Fz‘ 

which may be cast in the form 

pfi = (moc2 - bp,,Fa’)V’ + eaU 
- {Sg’‘  - ffia’v(p,Be - m,EB)}V,. 

Now it can be shown that this reduces to the familiar form 

p” = mc2 VU + eAU (5.1) 

t The sign of the Lagrangian shouId be reversed from that given in the previous article 
(Ellis 1970). 
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in the case of Rohrlich's equations (3.1), m being given by (3.5). This therefore 
illustrates the significance of Rohrlich's equations. Following (5.1) we have the 
e quat ion 

( 5  2) 

Taking for the energy momentum operator 

Cp,- eA,)(p, - eA,) = m2c4. 

p" = (E'pc) = ihc? 

we may obtain the Klein-Gordan (or Dirac) equations with potentials from (5.2): 

ieA, m2c2 [(e.+ x-) + = 0.  

From the second invariant 
+s..s,, = c2s2 

the usual procedure can be applied in the case of zero field (but presumably also in 
the case of nonzero field) to determine the spin states (see, for example, Corson 1953 
p. 95). 

Appendix 
We here show that (2.16) is equivalent to (2.17). Write (2.16) in the form 

0 = P4arHUouV, 
where 

Ha,, = Q(w s w + wqS,W, + w S wq - w,S,wq - yoSBWc( - yps,~,) s s a u  

and take the orthonormal Vierbein 

where the suffix p is tensorial. Then 

where b, c, drange over the values 0, I ,  2, 3. Since HUB, is completely antisymmetrical, 
it follows that H ( b c d )  is completely antisymmetrical. Substitution yields 

where b, c, d now range over theunequal values 1, 2, 3. Hence 

4 2 3 )  = 0 .  

From this it follows that HCoa is of the form 

Ha,, = pu, vu + p, ,  VU + p a ,  v, 
where Pap = H(,,,,e(,b)e(c,' is antisymmetric. But since HUaaVU = 0, P,, has the 
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form 
Pars = A, v, - A, v, 

and so Ha,, is identically zero. Equation (2.17) then follows. 
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